Down Regulation of Genes Involved in T Cell Polarity and Motility during the Induction of Heart Allograft Tolerance by Allochimeric MHC I
نویسندگان
چکیده
BACKGROUND The allochimeric MHC class I molecule [alpha1h1/u]-RT1.Aa that contains donor-type (Wistar Furth, WF; RT1u) epitopes displayed on recipient-type (ACI, RT1a) administered in conjunction with sub-therapeutic dose of cyclosporine (CsA) induces indefinite survival of heterotopic cardiac allografts in rat model. In vascularized transplantation models, the spleen contributes to graft rejection by generating alloantigen reactive T cells. The immune response in allograft rejection involves a cascade of molecular events leading to the formation of immunological synapses between T cells and the antigen-presenting cells. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the molecular pathways involved in the immunosuppressive function of allochimeric molecule we performed microarray and quantitative RTPCR analyses of gene expression profile of splenic T cells from untreated, CsA treated, and allochimeric molecule + subtherapeutic dose of CsA treated animals at day 1, 3 and 7 of post transplantation. Allochimeric molecule treatment caused down regulation of genes involved in actin filament polymerization (RhoA and Rac1), cell adhesion (Catna1, Vcam and CD9), vacuolar transport (RhoB, Cln8 and ATP6v1b2), and MAPK pathway (Spred1 and Dusp6) involved in tubulin cytoskeleton reorganization and interaction between actin and microtubule cytoskeleton. All these genes are involved in T cell polarity and motility, i.e., their ability to move, scan and to form functional immunological synapse with antigen presenting cells (APCs). CONCLUSIONS These results indicate that the immunosuppressive function of allochimeric molecule may depend on the impairment of T cells' movement and scanning ability, and possibly also the formation of immunological synapse. We believe that these novel findings may have important clinical implications for organ transplantation.
منابع مشابه
Intragraft Selection of the T Cell Receptor Repertoire by Class I MHC Sequences in Tolerant Recipients
BACKGROUND Allograft tolerance of ACI (RT1(a)) recipients to WF (RT1(u)) hearts can be induced by allochimeric class I MHC molecules containing donor-type (RT1A(u)) immunogenic epitopes displayed on recipient-type (RT1A(a)) sequences. Here, we sought the mechanisms by which allochimeric sequences may affect responding T cells through T cell receptor (TCA) repertoire restriction. METHODOLOGY/P...
متن کاملOral tolerance for delayed type hypersensitivity contribution of local and peripheral mechanisms
Oral tolerance is a physiological immune mechanism, which controls the outcome of deleterious hypersensitivity reactions to environmental antigens absorbed through the gastrointestinal tract, and maintains homeostasis. Using a mouse model of oral tolerance of delayed type hypersensitivity to contact allergens, i.e. haptens, we have examined the mechanisms involved in the induction of oral toler...
متن کاملDendritic Cells in Transplant Tolerance
Dendritic cells (DCs) are a heterogeneous family of professional APCs involved in priming adaptive immune responses. Donor DCs (direct pathway of allorecognition) and recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect pathway of allorecognition) participate actively in graft rejection by stimulating recipient T cell responses following organ tr...
متن کاملHuman Papillomavirus and Cancer - Immunological Consequences of MHC Class I Down-Regulation
Few studies have been conducted on the causative factors associated with the development of cancer. Infection by high risk human papillomaviruses (HPVs) have been implicated as causative agents in a variety of cancers. HPV is capable of evading immune system and establishing persistent infections. Prolonged infection and lesion maintenance are associated with higher risk of neoplastic progressi...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کامل